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Abstract

Best-Worst Scaling (BWS) can be a method of data collection, and/or a
theory of how respondents provide top and bottom ranked items from a list.
BWS is increasingly used to obtain more choice data from individuals and/or to
understand choice processes. The three “cases”of BWS are described, together
with the intuition behind the models that are applied in each case. A summary
of the main theoretical results is provided, including an exposition of the possible
theoretical relationships between estimates from the different cases, and of the
theoretical properties of “best minus worst scores.”BWS data can be analysed
using relatively simple extensions to maximum-likelihood based methods used
in discrete choice experiments. These are summarised, before the benefits of
simple functions of the best and worst counts are introduced. The chapter ends
with some directions for future research.

keywords: best worst scaling; discrete choice experiments; maxdiff model;
repeated best and/or worst choice: scores.
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1 Introduction

Best-Worst Scaling (BWS) can be a method of data collection, and/or a theory
of how respondents provide top and bottom ranked items from a list. We begin
with a brief history, followed by motivations for the use of BWS. The three
types (“cases”) of BWS will then be described in detail, before issues in the
conceptualisation (modelling) and analysis of best-worst data are discussed.
The chapter will end with a summary section which outlines future research
issues.

1.1 Brief history

In 1987, whilst working at the University of Alberta, Jordan Louviere became
interested in what he could do with information about the “least preferred”
item from a choice set, in addition to the traditional “most preferred”item. He
was primarily interested in whether a PhD student could “do”the task, and in
what extra information about her utility function could be elicited. His initial
focus was on “objects”, such as attitudes, general public policy goals, brands, or
anything that did not require description in terms of attributes and levels. As
such, his first peer-reviewed journal article examined the degree of concern the
general public had for each of a set of food safety goals, including irradiation of
foods and pesticide use on crops (Finn & Louviere, 1992). Figure 1 contains a
BWS question similar to ones used in that study.

– – – – – – – – – – – —
Insert Figure 1 about here
– – – – – – – – – – – —

Finn and Louviere proposed using BWS in place of category rating scales
for several reasons. First, rating scales do not force respondents to discriminate
between items, allowing them to state that multiple items are of similarly high
importance. Second, interpreting what the rating scale values mean is diffi cult.
Third, the reliability and validity of rating scales are frequently unknown and
unknowable. BWS addresses these issues by valuing items within a random util-
ity framework (Thurstone, 1927; McFadden, 1974): choice frequencies provide
the metric by which to compare the importance of items and the use of a model
with an error theory enables predictions to be made as to how often one item
might be picked over any other. Such inferences provided real life significance
of the method and avoided key problems with rating scales, such as “what does
7 out of 10 mean in terms of real life choices?”
The 1992 paper modelled best and worst choices among relatively simple

items, such as goals or attitudes, which Louviere generically referred to as ob-
jects. However, he had already begun applying BWS to more complex items.
These were either attribute-levels describing a single alternative (profile), or
were complete alternatives (profiles) of the type familiar to choice modellers.
The former case, requiring respondents to identify the best attribute-level and
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worst attribute-level within an alternative, was a relatively unfamiliar task to
choice modellers. However, the latter case had the potential to become the most
widely accepted case of BWS, by being “merely” an extension of the method
to a discrete choice experiment (DCE: Louviere, Hensher & Swait, 2000; Hen-
sher, Rose & Greene, 2005). In practice only the first case of BWS (considering
objects) received any sustained interest in academia before 2005, principally in
marketing among practitioners who were unhappy with rating scales. In partic-
ular, Steve Cohen won a number of best paper awards at ESOMAR conferences
for his application of BWS to objects (Cohen & Neira 2003, 2004). Since the
mid 2000s, there has been increasing interest in the other two cases of BWS,
particularly within the fields of health and economics. This prompted Louviere,
Flynn and Marley (2012) to try to standardise terminology across the fields and
provide cross-disciplinary guides to BWS that included motivations for its use.

1.2 Motivation.

During the 1980s Louviere and colleagues (Louviere & Hensher, 1982; Louviere
& Woodworth, 1983) pioneered discrete choice experiments. These had advan-
tages over traditional conjoint measurement techniques in terms of sound theo-
retical underpinnings (random utility theory) and the need to make fewer and
weaker assumptions about human decision-making (Louviere, Flynn & Carson,
2010): for example, assumptions about how people deal with numbers to an-
swer rating scale questions were no longer required. This move away from direct
quantitative valuation towards discrete choice models came at a cost: there was
usually no longer enough information to estimate models for single individuals
and valid inferences were typically only possible after aggregating across groups
of respondents. Therefore Louviere’s initial motivation for inventing BWS was
to obtain more data from a given respondent.
Louviere could have obtained more information from a respondent by simply

asking her to answer more choice sets. The motivation for BWS was the follow-
ing: if the respondent has already become familiar with a choice set containing
3 or more items by choosing “best”, why not simply exploit this, together with
the human skill at identifying extremes (Helson, 1964), and ask her for “worst”?
This would shorten the length of the DCE, certainly in terms of the number of
choice sets administered, and potentially in terms of the total time taken.
Obtaining more information about a list of items was not a new idea. Rank-

ing models were first formulated by Luce, Marley and others (Luce, 1959; Luce
& Suppes, 1965; Marley, 1968). With the exception of the rank ordered logit
regression model (Beggs, Cardell and Hausman, 1981; Hausman & Ruud, 1987),
closed form random utility models that could be estimated using the computers
available at the time were unavailable. Marley (1968) had put forward ideas on
partial and complete ranking in his PhD thesis but had not taken them forward;
Louviere credits Marley’s concepts of the “superior” and “inferior” items in a
list as his inspiration for BWS. Indeed Louviere believed models of best-worst
choices could be axiomatised, which would help establish their credentials to the
wider research community, and he began collaborating with Marley to achieve
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this goal (Marley & Louviere, 2005; Marley et al., 2008). In parallel to this,
Louviere continued research into the use of BWS merely as a convenient way
(via repeated application) to collect a complete ranking of all items in a choice
set. That work was conducted primarily with respect to multi-attribute con-
sumer goods such as mobile phones, although it could easily have been used in
studies examining simpler objects of the types mentioned above.
Finally, as already mentioned briefly, Louviere was motivated to use another

type of BWS (that requiring respondents to pick the best and worst attribute-
levels) to address a major stumbling block encountered in discrete choice models:
the confound between attribute weight and level scale (Anderson, 1970; Marley,
Flynn & Louviere, 2008). Section 2.2 describes this issue in more detail but
suffi ce to note that this confound is not addressed in traditional economic theory,
and is different from the mean-variance confound that arises for all limited
dependent variable (including logit and probit) models (Yatchew & Griliches,
1985).

1.3 BWS as a method of data collection vs BWS as a
theory

BWS was initially used mainly as a method of collecting data in a cost-effi cient
manner, though Finn and Louviere (1992) did introduce the maximum differ-
ence (maxdiff) model for best-worst choice (see below). However, the work
with Marley spurred research into BWS as a theory, explaining the processes
that individuals might follow in providing best and worst data. The 2005 pa-
per introduced sequential and maxdiff models of best-worst choices (Marley &
Louviere, 2005). The former assumes the individual provides best and worst in
a particular order whilst the latter is a well-established model that assumes a
simultaneous choice of that pair of items that maximises the difference between
them on a latent (usually utility) scale. Some applied practitioners may regard
process issues as esoteric, but there is increasing evidence that these may matter
when interest is in choice models for particular individuals. Moreover, what are
called “maxdiff scaling”models in some estimation software are sequential, not
maxdiff, ones.
Recent work by Louviere has returned to the use of BWS as a method of data

collection (Louviere et al., 2008): its purpose, via repeated rounds of best-worst
choices, is simply to obtain a full ranking of items in a manner that is “easy”for
respondents. Analysis proceeds by expanding the data to all the implied choice
sets, and then using statistical models based on first choices (either conditional
or binary logistic regression). That work is not covered here as it is the subject
of Chapter xx; also see the class of weighted utility ranking models (Marley &
Islam, 2012), which are motivated, in part, by those expansion methods.
The next section describes the three types (“cases”) of BWS in detail; it is

important to note that BWS can be used as a data collection method and/or a
theory of process for all three cases.
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2 BWS: The Three Cases

Louviere developed three cases of BWS, which differ in the nature and com-
plexity of the items being chosen. Case 1 (the Object case) is the simplest,
whilst Cases 2 and 3 (the Profile and Multi-profile cases) involve an attributes
and levels structure that should be familiar to choice modellers. The frequent
lack of clarification in many published articles as to which case is being used
reflects the fact that different disciplines have tended to embrace different cases.
Academic researchers from marketing, food science and personality assessment
tend to be familiar with case 1 whilst those working in health are familiar with
case 2 (and increasingly, case 3) and marketing industry practitioners tend to
use case 3. This section concentrates on the principles and design of the three
cases; Section 3 present details on the related models.

2.1 Case 1 (Object case)

Case 1 BWS is appropriate when the researcher is interested in the relative
values associated with each of a list of objects. These might be brands, public
policy goals, or any set of objects that can be meaningfully compared. Gen-
erally, these will not be described in terms of an attribute and level structure.
However, if the researcher is interested in valuing items such as brands, (s)he
must recognise that respondents might infer particular levels of key attributes
when considering these: instructions to respondents must be carefully worded to
standardise any such inferences if estimates of (for example) airline carrier are
not to be confounded with estimates of assumed levels of service. As mentioned
above, the first peer-reviewed case 1 study investigated food safety. It made
it clear that the latent scale of interest does not have to be “utility”; degree
of concern was key and other metrics may be of relevance, depending on the
application. Indeed many applications of category rating scales are amenable
to replacement by best-worst questions.
Once the researcher has chosen the list of objects, (s)he must present choice

sets of these to respondents to obtain best and worst data. Choice sets here
serve a similar purpose to those in traditional DCEs: statistical designs are
implemented that include (some or all) subsets of all possible items which, with
suitable assumptions, facilitate inferences about the value associated with the
wider list of objects. More specifically, choice frequencies across all sets are
used to estimate the relative values associated with objects. Since there is
no attribute and level structure to consider, Case 1 designs are typically less
complex (and less problematic) than those for DCEs. Early work by Louviere
utilised 2J designs, extending his seminal work on DCEs (Louviere & Hensher,
1982; Louviere & Woodworth, 1983). Such designs are so-called because for J
objects, there are 2J distinct choice sets possible. Table 1 gives all 16 choice sets
for 4 objects - there is one full set of four, four triples, six pairs, four singletons
and the null (empty) set.

– – – – – – – – – – – —
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Insert Table 1 about here
– – – – – – – – – – – —

Fractions of a 2J design can be used to keep the number of choice sets small,
using similar principles to those used in DCEs (for example main effects de-
signs). The potential problems with these designs are psychological rather than
statistical in origin. The size of the choice set is not constant and respondents
may infer things that have no relevance for the outcome of interest: they might
decide that objects in small choice sets “must be somehow important to the
researcher so I’ll pay more attention to those”.
Today, Balanced Incomplete Block Designs (BIBDs) are more common. A

BIBD ensures that occurrence and co-occurrences of objects is constant, helping
minimise the chance that respondents can make unintended assumptions about
the objects based on aspects of the design. For example, a study of importance of
nine short-term investment priorities in Sydney’s public transport systems used
a BIBD which presented 12 sets of size three. Each object appeared four times
across the design and each pair of objects appeared once. BIBDs are available
from design catalogues, such as that in Street & Street (1987). Unfortunately
there are some numbers for which there are no BIBDs, whilst other numbers
have two or more possible BIBDs (varying in the number and size of choice sets).
In the former case, it is best to include some “realistic but irrelevant”objects to
make the number up to one for which there is a BIBD; an alternative strategy
of using a statistical algorithm to produce a “nearly” balanced design risks
problems similar to those above in terms of what the respondents are assuming.
Furthermore, some of the attractive analysis methods to be discussed become
problematic.
An attractive feature of BIBDs is that the number of choice sets is often

not markedly different from the number of objects being valued. This, together
with the fact they force respondents to discriminate between objects, makes
case 1 BWS attractive in comparison with category rating scale surveys. Those
BIBDs that ensure that every object appears in every possible position the
same number of times are called Youden designs and represent the most robust
defence against any propensity of the respondent to “read too much into” the
size or composition of the choice sets on offer.

2.2 Case 2 (Profile case)

Case 2 BWS is largely unknown outside of the field of health economics, to which
it was introduced by McIntosh and Louviere in a conference paper (2002). It is
easiest to describe using an example (Figure 2) based on a dermatology study
(Coast et al., 2006; Flynn et al., 2008).

– – – – – – – – – – – —
Insert Figure 2 about here
– – – – – – – – – – – —
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The set looks like a single profile (alternative) from a DCE or conjoint study.
However, the choices the respondent is asked to make do not require him/her to
consider the value of the profile as a whole. Instead, (s)he must consider the at-
tribute levels that describe it, choosing the one that is best (most attractive) and
the one that is worst (least attractive). Case 2 BWS is most popular in health
because (1) the systems of many industrialised countries do not typically give
opportunities for patients to become “experienced consumers” and (2) health
care goods/services can be complicated and even pairs of specifications (in a
simple DCE) may lead to unacceptable cognitive burden, particularly among
vulnerable patient groups.
In some respects, Case 2 is merely Case 1 with the objects grouped into

an attribute and level structure. However, what makes Case 2 unique is that
attribute-levels are only meaningful when forming a profile. Thus, if meaningful
profiles are to be presented, two levels of the same attribute cannot compete with
one another; each level competes against a level from every other attribute. This
means that designs for Case 1 are generally inappropriate for Case 2. However,
Case 2 design is relatively easy for those researchers who would generate a DCE
design the following way:
(1) Use a “starting”design to produce (for example) the “left-hand side

profile”in every choice set, then
(2) Use some statistical procedure to produce the other profiles in each

choice set, from the “left-hand side ones.”
In particular, Case 2 design involves only step (1): there are no “other”pro-

files in each choice set since the choice set is the profile. Whilst this makes Case
2 design easy in some respects, it has potential problems, which can be serious
depending on the issue of interest. These generally arise when attributes all
have ordered levels. We use a profile from the EQ-5D health state classification
system (Figure 3) to illustrate this.

– – – – – – – – – – – —
Insert Figure 3 about here
– – – – – – – – – – – —

All five attributes of the EQ-5D have ordered levels, generally representing
“no problems”through to “severe problems”. Presenting this particular profile
to respondents would be unwise since the best and worst choices are obvious (to
anyone who isn’t a masochist). Conceptually, the random utility term is likely
identically equal to zero (not a sampling zero), violating random utility theory
and thereby biasing regression estimates (if they are estimable at all). It is the
researcher’s responsibility to code with care, so as to minimise the number of
choice sets with this property. Unfortunately, as the design becomes larger (so
as to estimate interaction terms), this becomes impossible. The first author
recently advised a company that at least 75% of its Case 2 data were worthless,
thanks to a major choice modelling company providing it with a design that was
almost the full factorial. Thus, for many Case 2 applications it may be diffi cult,
or impossible, to estimate interaction terms.
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Louviere originally anticipated that Case 2 BWS would allow decomposition
of attribute weight and level scale values (McIntosh & Louviere, 2002), a 40
year old problem in mathematical psychology (Anderson, 1970). That is, it is
assumed that there is a multiplicative relationship between the importance of an
attribute per se —which might vary depending on the context of the choice task
—and the level scale of an attribute level —which, conceptually, should be fixed
in value no matter what the context of the choice. McIntosh and Louviere were
partly right: Marley et al. (2008) proved that although Case 2 BWS does not
enable estimation of attribute importance, it does enable the direct estimation
of attribute impact, a weaker concept that represents the average utility of an
attribute across all its levels. Also, as shown in Section 3.1.1, a case 2 study,
in combination with a case 3 study on the same (or suitably related) profiles, in
principle may allow the separate measurement of attribute weight and level scale
value; should such a study be successful, it would solve this classic measurement
problem.

2.3 Case 3 (Multi-profile case)

Case 3 BWS is perhaps the most accessible (conceptually at least) to DCE
practitioners. It “merely” requires respondents to choose the worst (least at-
tractive) profile/alternative as well as the best (most attractive) one in a DCE.
Therefore, virtually all (non pairwise) DCEs administered by CenSoC at UTS
are now Case 3 BWS studies.

– – – – – – – – – – – —
Insert Figure 4 about here
– – – – – – – – – – – —

Figure 4 provides an example task from a mobile phone study. The in-
creasing use of web-based administration makes expansion of DCEs into Case 3
BWS studies easy and cost-effi cient. The additional data provided are valuable
in many marketing applications: the additional information obtained about the
consumer’s utility function is valuable both for its own sake and in identifying
attribute levels that make a good “unacceptable”. The consumer who trades off
attributes in a manner predicted by traditional economic theory when choos-
ing most preferred might demonstrate lexicographic preferences when answering
least preferred. Such information is valuable to the marketer who wishes to en-
sure that a product passes an initial “consideration”test by consumers: having
an attractive price and a set of desirably valued attributes is of no use if a level
on another attribute rules it out of consideration. Availability of data and such
“real life”marketing issues caused Case 3 BWS studies to be the primary vehicle
for empirical investigations of choice process issues to date. However, process
issues apply to all three cases of BWS and these issues are dealt with next.
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3 Multinomial Logit Models of Best and/orWorst
Choice

We begin with notation that applies to all Cases (1, 2, and 3) and talk of
“choice options” (or “options”) without distinguishing between objects (Case
1), attribute-levels of a profile (Case 2), and profiles (Case 3). For later results,
we need additional notation for Case 2 and Case 3. We also present the results
in terms of a numeric “utility”value associated with each choice option (and,
as relevant, with each of its attribute-levels), rather than in terms of the utility
coeffi cients (“beta weights”) that are standard in the discrete choice literature;
we do this because various theoretical results on BWS can only be stated and
proved in the former notation (for example, those in Marley & Louviere, 2005;
Marley et al., 2008; Marley & Pihlens, 2012). However, for the reader’s benefit,
we do introduce the utility coeffi cient notation when discussing Case 3.
Let S with |S| ≥ 2 denote the finite set of potentially available choice options,

and let D(S) denote the design, i.e., the set of (sub)sets of choice alternatives
that occur in the study. For example, participants might be asked about their
preferences for mobile phones by repeatedly asking them for choices amongst
a sets of four different options: S represents the collection of mobile phones
in the study, and each element of the set D(S) represents the set of options
provided on one particular choice occasion. For any Y ∈ D(S), with |Y | ≥ 2,
BY (x) denotes the probability that alternative x is chosen as best in Y , WY (y)
the probability that alternative y is chosen as worst in Y , and BWY (x, y) the
probability that alternative x is chosen as best in Y and the alternative y 6= x is
chosen as worst in Y. Most previous work using similar mathematical notation
has used PY (x) or P (x|Y ) where we use BY (y). We use the latter for best, and
WY (y) for worst, to distinguish clearly between such Best and Worst choice
probabilities.
Many models of choice, especially those involving best-worst scaling, are

based on extensions of the multinomial logit (MNL) model. The best choice
MNL model assumes there is a scale u such that for all y ∈ Y ∈ D(S),

BY (y) =
eu(y)∑
z∈Y e

u(z)
. (1)

The value u(y) for an option y is interpreted as the utility for that option. The
representation restricted to Y ⊆ S, |Y | = 2, is the binary MNL model. Various
results show that u can be assumed to be a difference scale - that is one, that
is unique up to an origin. For instance, the Luce choice model corresponds to
the MNL model when the latter is written in terms of b = eu; b is shown to be
a ratio scale in Luce (1959), which implies that u is a difference scale. Parallel
observations hold for the representations throughout this paper that are written
in terms of u, where the quoted theoretical results were obtained using b = eu.

The parallel MNL model for worst choices assumes there is a scale v such
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that for all y ∈ Y ∈ D(S),

WY (y) =
ev(y)∑
z∈Y e

v(z)
.

Marley and Louviere (2005) present a theoretical argument for the case where
v = −u, i.e., we have

WY (y) =
e−u(y)∑
z∈Y e

−u(z) . (2)

Assuming v = −u in the MNL models for best and worst implies that the
probability that y ∈ Y is selected as best in a set Y with scale values u(z),
z ∈ Y , is equal to the probability that y ∈ Y is selected as worst in a set Y
with scale values −u(z), z ∈ Y . In particular, when (1) and (2) both hold, we
have that for all x, y ∈ X,x 6= y, B{x,y}(x) =W{x,y}(y), and write the common
value as p(x, y).
We now present three MNL-based models for best-worst choice.
Perhaps the most natural generalization of the above MNL models to best-

worst choice is the maxdiff model. This model makes the strong assumption
that the utility of a choice alternative in the selection of a best option is the
negative of the utility of that option in the selection of a worst option, and this
utility scale u is such that for all x, y ∈ Y ∈ D(S), x 6= y,

BWY (x, y) =
e[u(x)−u(y)]∑

{p,q}∈Y
p 6=q

e[u(p)−u(q)]
. (3)

It is known that the three models (1), (2), and (3), with a common scale u,
satisfy a common random utility model, based on the extreme value distribu-
tion1 - it is the inverse extreme value maximum2 random utility model (Marley
& Louviere, 2005, Def. 11, and Appendix A of this chapter). An alternate
description that leads to the maxdiiff model is given by the following process
description (Marley & Louviere, 2005): Assume that the best (respectively,
worst) choice probabilities satisfy (1) (respectively, (2)); equivalently, each of
these choice probabilities is given by the relevant component of the above ran-
dom utility model. A person chooses a best and a worst option, independently,
according to the above best (respectively, worst) random utility process; if the
resultant best and worst options are different, these form the best-worst choice
pair; otherwise, the person resamples both the best and the worst option until
the selected options are different. Marley and Louviere (2005) show that, under
the above assumptions, this process also gives the maxdiff representation, (3).
Once one begins thinking of best and worst choices as possibly being made

sequentially, there are several other plausible models forms for the combined
1This means that: for −∞ < t <∞ Pr(εz ≤ t) = exp−e−t and Pr(εp,q ≤ t) = exp−e−t.
2We have added maximum to Marley & Louviere’s definition to emphasize that the random

utility models of choice are written in terms of maxima, whereas the equivalent (“horse race”,
accumulator) models of response time are written in terms of minima. See Hawkins et al.
(2012) for such response time models for best-worst choice.
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best-worst choices. Assuming the best choices satisfy (1) and the worst choices
satisfy (2), the best then worst MNL model states: for all x, y ∈ Y ∈ D(S),
x 6= y,

BWY (x, y) = BY (x)WY−{x}(y),

Similarly the worst then best MNL model states: for all x, y ∈ Y ∈ D(S), x 6= y,

BWY (x, y) =WY (y)BY−{y}(x).

Repeated best-worst choices satisfying a common one of the above models
lead naturally to models of rank order data. Various authors are exploring
such models, and their generalizations to include heterogeneity - see Collins and
Rose (2011), Scarpa and Marley (2011), Scarpa, Notaro, Raffelli, Pihlens, and
Louviere (2011), Marley and Pihlens (2012), and Marley and Islam (2012).
For the additional material on Case 2 and Case 3, we limit consideration to

the maxdiff model (for best-worst choice). Parallel notation applies to models
based on repeated best and/or worst choices.
The notation already introduced, where x, y, etc., denoted generic objects,

is all we need to state later theoretical results for Case 1. However, for Case 2
and Case 3 we need the following additional notation.
There are m attributes, usually with m ≥ 2, and we let M = {1, ...,m}.

Attribute i, i = 1, ...,m, has q(i) levels; we call these attribute-levels and some-
times let p, q denote typical attribute-levels, with the context making clear which
attribute is involved. A profile (traditionally called a multiattribute option) is
an m-component vector with each component i taking on one of the q(i) levels
for that component. Given a set P of such profiles, let D(P ) denote the design,
i.e., the set of (sub)sets of profiles that occur in the study. We denote a typical
profile by

z = (z1, ..., zm), (4)

where zi, i = 1, ...,m, denotes the level of attribute i in profile z. For Case 1, we
assume that each object x has a scale value u(x), so the representation of the
maxdiff model is as in (3); it follows from the results in Marley and Louviere
(2005) that u is a difference scale, i.e., unique up to an origin3 . For Case 2, we
assume that attribute-level p has a scale value u(p), and the representation of
the maxdiffmodel is as in (3); it follows from the results in Marley and Louviere
(2005) that u is a difference scale, i.e., unique up to an origin. For Case 3, we
assume that each profile z has a scale value u(m)(z) with u(m) a difference scale.
We also assume the additive representation

u(m)(z) =
∑m
i=1 ui(zi),

where each ui is a separate (different) difference scale.

3That paper uses a representation in terms of b = eu, and b is shown to be a ratio scale,
i.e., unique up to a muliplicative scale factor. This implies that u is a difference scale, i.e.,
unique up to an additive constant (or origin). This relation holds for all the results stated
in this paper as having been deomonstrated in Marley & Louviere (2005), Marley, Flynn &
Louviere (2008) or Marley & Pihlens (2012).
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For Case 2, we use the following revised notation: for a typical profile z ∈ P ,
let Z = {z1, ..., zm} and let BWZ(zi, zj) denote the probability that, jointly, the
attribute-level zi is chosen as best in Z and the attribute-level zj is chosen as
worst in Z.

Definition 1 (Adapted from Marley, Flynn, & Louviere, 2008, Def. 12) A
set of best-worst choice probabilities on a finite set of profiles P satisfies an
attribute-level maxdiff model (on single profiles) iff there exist a real-
valued scale u on the attributes such that for every profile z ∈ P [equivalently,
for every such Z = {z1, ..., zm}] and i, j ∈M , i 6= j,

BWZ(zi, zj) =
e[u(zi)−u(zj)]∑

k,l∈M
k 6=l

e[u(zk)−u(zl)]
(i 6= j). (5)

Marley et al. (2008) show that, under reasonable mathematical assumptions,
u is a difference scale, i.e., unique up to an origin.
For Case 3, we use the following revised notation: for typical profiles x,y ∈

P , BWX(x,y) is the probability that, jointly, the profile x is chosen as best in
X and the profile y is chosen as worst in z.

For completeness, we first present the maxdiffmodel on profiles written with
the options in boldface to represent those profiles.

Definition 2 A set of best-worst choice probabilities for a design D(P ), P ⊆ Q,
|P | ≥ 2 satisfies a maxdiff model on profiles iff there exist a real-valued scale
u(m) on P such that for every x,y ∈ X ∈ D(P ), x 6= y, |X| ≥ 2,

BWX(x,y) =
e[u

(m)(x)−u(m)(y)]∑
r,s∈X
r6=s

e[u(m)(r)−u(m)(s)]
(x 6= y). (6)

Marley et al. (2008, Theorem. 8) show that, under reasonable mathematical
assumptions, u(m) is a difference scale, i.e., unique up to an origin.
In the case where

u(m)(z) =
∑m
i=1 ui(zi),

we have the following representation of the maxdiff model on profiles.

Definition 3 (Adapted from Marley & Pihlens, 2012, Def. 2). A set of best-
worst choice probabilities for a design D(P ), P ⊆ Q, |P | ≥ 2, satisfies a pref-
erence independent maxdiff model iff there exists a separate (different)
nonnegative scale ui on each attribute i, i = 1, ...,m, such that for every x,y ∈
X ∈ D(P ), x 6= y, |X| ≥ 2,

BWX(x,y) =
e
∑m

i=1[ui(xi)−ui(yi)]∑
r,s∈X
r 6=s

e
∑m

i=1[ui(ri)−ui(si)]
(x 6= y). (7)
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Marley and Pihlens (2012, Theorem 6) show that, under reasonable mathe-
matical assumptions, each ui is a difference scale, i.e., unique up to an origin,
with different origins for each i.

The more standard notation in the discrete choice literature for (7) assumes
that there is a vector

β = (β1, ..., βm),

with the ith component sometimes called the utility coeffi cient for attribute i,
such that

BWX(x,y) =
expβ

′(x−y)∑
r,s∈X
r 6=s

exp−β′(r− s)
(x 6= y).

However, that notation requires the attribute-levels to either be numerical or
coded in some numerical fashion (e.g., with dummy codes), and is not suitable
for proving results of the kind described next.

3.1 Properties of scores for the maxdiffmodel

We now present theoretical results for best minus worst scores (defined below)
for the maxdiff model of best-worst choice. Some of these results were proved
in Marley and Pihlens (2012), the rest were proved in Marley and Islam (2012).
The proofs in Marley and Islam were for (partial or full) ranking probabilities
that belong to the class of weighted utility ranking models. This class includes
the maxdiff model of best-worst choice as a special case, along with the MNL
model for best choice and the MNL model for worst choice; however, it also
includes many interesting ranking models, such as the reversible ranking model
(Marley, 1968). For simplicity and relevance, we state the results for the maxdiff
model - that is, for Case 1 we have (3); for Case 2, we have (5); and for Case
3 we have (6) - or (7) when we assume additivity. Nonetheless, we know that,
empirically, the score measures used in these results are useful for preliminary
analyses of the data, independent of the model that is eventually fit to the data
- see Section 4.2.
We first state results that hold in common for Case 1, 2, and 3; these are

results that do not depend on the actual structure (type) of the “choice options”
- where a (choice) option is to be interpreted as an object (Case 1), an attribute-
level (Case 2), or a profile (Case 3).
Using notation paralleling that in Marley & Louviere (2005) for Case 1, for

each option x in the design, let b̂(x)− ŵ(x) denote the number of times option
x is chosen as best in the study minus the number of times option x is chosen
as worst in the study. We call this the score for x (in this particular design)
and refer to “the scores”for these values across the options in the design.
Scores: Property 1 (for Case 1, 2, and 3)
Using general language (with undefined terms in quotation marks), the fol-

lowing states a result due to Huber (1963) in such a way that it applies to the
maxdiff model for options; Marley and Islam (2012) state the terms and results
exactly. Assume that one is interested in the rank order, only, of the (utility)

14



scale values in the maxdiff model. An acceptable loss function is a “penalty”
function with a value that remains constant under a common permutation of
the scores and the scale values, and that increases if the ranking is made worse
by misordering a pair of scale values. Let S be a master set with n ≥ 2 el-
ements and assume that, for some k with n ≥ k ≥ 2, every subset of S with
exactly k elements appears in the design4 D(S). Then, given the maxdiffmodel,
ranking the scale values in descending order of the (best minus worst) scores,
breaking ties at random, has “minimal average loss”amongst all (“permutation
invariant”) ranking procedures that depend on the data only through the set of
scores.
Comment 1 The above result actually holds for the class of weighted utility

ranking models, a class that includes the MNL for best; MNL for worst; and the
maxdiff model for best-worst choice (Marley & Islam, 2012).
Comment 2 Given the above property of the scores, they are likely use-

ful starting values in estimating the maximum likelihood values of the utilities
u(x), x ∈ S. In fact, various empirical work on the maxdiff model gives a linear
relation between the (best minus worst) scores and the (maximum likelihood)
estimates of the utilities5 (Louviere et al., 2008, 2012). Also, Marley and Is-
lam (2012) show similar results for weighted utility ranking models applied to
the ranking data of a case 3 study of attitudes toward the microgeneration of
electricity.
Scores: Property 2 (for Case 1, 2 and 3)
The set of (best minus worst) scores is a suffi cient statistic.
Comment 1 The above result actually holds for the class of weighted utility

ranking models, a class that includes the MNL for best; MNL for worst; and the
maxdiff model for best-worst choice (Marley & Islam, 2012, Theorem 3).
The following result shows that, in the sense stated, the best minus worst

scores reproduce the difference between the best and the worst choice probabil-
ities given by the maximum likelihood estimates of the maxdiff model.
Scores: Property 3 (for Case 1, 2 and 3)
For the maxdiff model, the (best minus worst) score for an option x equals

the sum over X ∈ D(P ) of the weighted difference between the (marginal)
best and the (marginal) worst probability of choosing option x in set X, with
those probabilities evaluated at the values of the maximum likelihood parameter
estimates; the weight for a set X is the number of times X occurs in the design
D(P ) (Marley & Pihlens, 2012, prove this for case 3; the result for case 1 and
case 2 is then immediate).
The following result applies to the attribute levels in case 3; there is no

equivalent result in case 1 or case 2 as there are no “implied”choices of attribute-
levels in those cases.

4Further work is needed to extend the theoretical result to, say, balanced incomplete block
(BIBD) designs. See Marley & Pihlens (2012) for related discussions of connected designs.

5Assume that the the maxdiff model holds, and a balanced incomplete design (BIBD) is
used for the survey. If the utility (scale) values are in a small range - say, [-1,1] - then a linear
relation holds under a first-order Taylor expansion of the maxdiff choice probabilities (Marley
& Schlereth, unpublished).
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Scores: Property 4 (for Case 3, with the preference independent
maxdiff model, Definition 3)
Using notation from Marley & Pihlens (2012) for choice among profiles (Case

3), b̂i(p) − ŵi(p), p ∈ Q(i), i ∈ M , denotes the number of times attribute-level
p is ‘chosen’6 as best minus the number of times p is ‘chosen’as worst. Then
Marley and Pihlens show that, for the preference independent maxdiff model
(Def. 3),
i) The set of values b̂i(p)− ŵi(p) is a suffi cient statistic.
ii) b̂i(p) − ŵi(p) equals the sum over all X ∈ D(P ) of the weighted differ-

ence between the (marginal) best and (marginal) worst probability of ‘choosing’
attribute-level p in set X, with those probabilities evaluated at the values of the
maximum likelihood parameter estimates; the weight for a set X is the number
of times X occurs in the design D(P ).

3.1.1 Relations between the scales in Case 2 and Case 3

Note that in Case 2, we have the same difference scale u on each attribute,
whereas in Case 3, we have a different difference scale ui on each attribute i.
Since these scales are derived in different (types of) experiments, there is no
necessary empirical relation between them. However, one would hope that such
(Case 2 and Case 3) experiments are not measuring totally different properties
of the attributes. One theoretical (and, potentially, empirical) property one
could hope for is that for each attribute i, separately, the scale ui of Case 3 is
strictly monotonic increasing with respect to the scale u of Case 2. But we are
also assuming that the ui , i = 1, ...,m, and u, are separate (different) difference
scales. Then, under weak mathematical conditions7 , the relation between ui
and u has to be linear: i.e., there are constants αi > 0 and βi such that,
for each attribute-level zi, we have ui(zi) = αiu(zi) + βi (see Aczél, Roberts,
& Rosenbaum,1986; and Marley & Pihlens, 2012, for related results8). The
interested reader can get a feeling for why this result is true by trying to make
a strictly monotonic increasing function, other than a linear one, “work” in
preserving the difference scale properties of the ui and u.
Thus, if have data from both a Case 2 and a Case 3 experiment where the

above results hold, then substituting the expressions ui (zi) = αiu(zi)+βi in the
Case 3 representation of the preference independent maxdiff model, (7), gives:
for x,y ∈ X, x 6= y,

BWX(x,y) =
e
∑m

i=1 αi[u(xi)−u(yi)]∑
r,s∈X
r 6=s

e
∑m

i=1 αi[u(ri)−u(si)]
(x 6= y).

6Of course, in this Case 3, attribute-level p is (only) ‘chosen’as a consequence of its being
a component of the profile chosen on a given choice opportunity.

7The function is continuous; alternatively, it is bounded from above on an interval.
8 In both cases, the results were developed in terms of ratio scales b = eu, bi = eui , rather

than the equivalent difference scales u, ui.
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In this expression, the “importance weights”αi are known (from the relation
between the data in the two experiments). However, from a Case 3 (or Case 2)
experiment, alone, such weights are not identifiable (see Marley et al., 2008).
The above results relating the Case 2 scale to the Case 3 scales were based on

the assumptions that the preference independent maxdiff model (Def. 3) holds
and for each attribute i, separately, the scale ui of Case 3 is strictly monotonic
increasing with respect to the scale u of Case 2. Although this is an interesting,
and possibly desirable result, the data may be otherwise. Weaker relations
between the scales in Case 2 and Case 3 are obtained under weaker assumptions
(Appendix B).

4 Data analysis

Analysis of best-worst data can be conducted in a variety of ways (Louviere
et al., 2008; Flynn et al., 2007; Flynn 2010). Two broad methods will be
explored here: maximum-likelihood-based methods that are familiar to DCE
practitioners, including conditional logistic regression and its extensions, and the
best-minus-worst scores introduced in Section 3. It will be demonstrated that
although the scores are not part of the typical academic “toolbox”of methods,
they have advantages in understanding preference heterogeneity.

4.1 Maximum Likelihood (ML) based methods

There is increasing support in statistical packages for “partial ranking”models,
for use when the researcher only has data from certain ranking depths, e.g. the
top two ranks, or top and bottom ranks. These can be used to analyse best-
worst data, but researchers are strongly recommended first to conduct simpler
analyses on best and worst data separately to understand whether assumptions
made in these models are satisfied. Basic ranking models assume the data at
various ranking depths (1) come from a common underlying utility function
and (2) have the same variance scale factor. These assumptions can be tested
by plotting conditional logit (that is, multinomial logit) estimates of the best
data against those for the worst data: a negative linear relationship indicates
assumption (1) holds, and a slope with absolute magnitude of 1 indicates (2)
holds. Indeed, multiplying all independent variables for the worst data by -1
is a “trick”which allows the researcher to stack the “worst choice sets”below
the “best choice sets”and estimate a conditional logistic regression which treats
these as “just more best choice sets”. The intuition behind this is as follows:
for plausible models (including the conditional logit for best, conditional logit
for worst, and maxdiff for best worst) choosing worst from four items with
latent utilities of 2, 4, 7, 8 is observationally equivalent to choosing best from
four items with latent utilities of −2,−4,−7,−8. A final adjustment to worst
choice data is to delete the item already chosen as best from each choice set.
This assumes a sequential model of best, then worst. Knowledge of how the
respondent answered each choice set allows the analyst to make the appropriate
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deletion (whether best or worst) and web-surveys can force the respondent to
provide a best item from J , followed by a worst from J − 1 (or vice versa).

Increasing evidence suggests the variance scale factor for best and worst data
is often not equal to one and future studies should estimate it, using (minus)
the estimated value as the factor used to multiply independent variables by for
worst choice sets in order that they can be treated as best sets. This reflects
practice in data pooling techniques proposed by Swait and Louviere (1993) and
formal testing of data pooling should ideally be conducted using methods such
as those they propose.
Flynn et al. (2008) compared sequential models of the type just described

with the maxdiff model. The maxdiff model requires all possible pairs to be
modelled in each choice set, making datasets very large. The dermatology Case
2 study (with four attributes) required 12 possible pairs to be set up per choice
set. The maxdiff model’s advantages are largely theoretical: the trick used
in sequential models to turn worst into best choices introduces a very small
error in the likelihood function due to the asymmetry in the EV1 distribution
(Marley and Louviere, 2005; Flynn et al., 2008). The maxdiff model has no
such error, and the properties of the scores presented in Section 3.1 are based on
that model. However, in practice, estimates from maxdiff models are generally
indistinguishable from those from sequential models and data parsimony means
the latter are generally preferred. Finally, the reader should ask themselves
whether, when providing best and worst data, they would really consider all
possible pairs before giving their answer.

4.2 The best-minus-worst scores.

Marley and Louviere (2005) show that the best minus worst scores are not unbi-
ased estimates of the true utilities when the maxdiffmodel holds. However, they
have been found to be linearly related to the ML estimates of the conditional
logit model in virtually every empirical study to date. This is probably a mani-
festation of the linear portion of the logistic (cumulative distribution) function;
thus, a non-linear relationship is likely only when the researcher is plotting the
scores for a single highly consistent respondent, or for a sample of respondents
each of whom is highly consistent and the choices are highly consistent across
the sample. In other words, whilst the analyst should be wary of inferring car-
dinality in the scores for a given respondent, (s)he does not have to aggregate
many respondents to obtain scores that are highly linearly related to the condi-
tional logit estimates. Thus, researchers who are not confident of implementing
limited dependent variable models such as logit and probit regression can obtain
good estimates using a spreadsheet.
The scores also enable considerable insights to be drawn at the level of the

individual respondent. For example taxonomic (clustering) methods of analysis
have been applied to the scores (Auger et al., 2007). Since the scores are a
function of choice frequencies there is no need for any prior rescaling of the data
in attempts to eliminate or standardise any respondent-level response styles: two
people who agree on the rank order of a list of items but who use different parts of
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a rating scale will provide identical best-worst data. Flynn and colleagues have
also used the scores to help evaluate solutions from latent class analyses, which
can give spurious solutions (Flynn et al., 2010). This use of the scores to judge
and guide analyses of the choice (0,1) data that choice modellers traditionally use
represents an important aid in decomposing mean and variance heterogeneity.
It is well-known that the perfect confound between means and variances on the
latent scale holds for all limited dependent variable (including logit and probit)
models (Yatchew, & Griliches, 1985), which means that technically there are an
infinite number of solutions to any DCE. Judicious use of the scores can help
rule out many outcomes.

5 Summary and Future Research

Best-Worst Scaling offers a cost-effi cient way of obtaining more information
from a respondent, and/or a way of evaluating models of choice processes. It
is important to note that it is a theory of how an individual makes choices;
aggregating across individuals requires assumptions to be made (and tested,
where possible). It is for this reason that the BIBDs proposed here are attractive:
a single design means there is no potential for any confounding of properties of
the design with any given individual’s preferences.
There are a number of fruitful areas for future research. Researchers inter-

ested in keeping within a traditional choice modelling paradigm would welcome
work to further understand how and to what extent best-worst data can be
pooled. Issues such as the size of the variance scale factor at ranking depths
and the conditions under which worst models have a different functional form to
best are important. Indeed work to further understand process issues generally
is welcome: early work suggests that the class of models with natural process
interpretations is different from the class of models with useful score properties.
Yet use of the scores may give the average applied researchers more confidence,
not least in terms of better understanding heterogeneity in preferences and/or
scale in their data. Data pooling has normative issues that are pertinent to
health economists in particular: for best-worst choice, it is only if all individu-
als satisfy the maxdiffmodel that the average of their utility estimates represents
the preferences of the “representative individual”used in economic evaluation.

Appendix A
A maximum random utility model for best, worst, and best-worst

choices satisfying a “common”MNL model

When treated as a single model, the three models (1), (2), and (3), satisfy
an inverse extreme value maximum2 random utility model (Marley & Louviere,
2005, Def. 11). That is, for z ∈ S and p, q ∈ S, p 6= q, there are independent
random variables εz, εp,q with the extreme value distribution1 such that for all
y ∈ Y ∈ D(S),

BY (y) = Pr

(
u(y) + εy = max

z∈Y
[u(z) + εz]

)
, (8)
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WY (y) = Pr

(
−u(y) + εy = max

z∈Y
[−u(z) + εz]

)
, (9)

and for all x, y ∈ Y ∈ D(S), x 6= y,

BWY (x, y) = Pr

u(x)− u(y) + εx,y = max
p,q∈Y
p 6=q

[u(p)− u(q) + εp,q]

 . (10)

Standard results (summarized by Marley & Louviere, 2005) show that the ex-
pression for the choice probabilities given by (8) (respectively, (9), (10)) agrees
with that given by (1) (respectively, (2), (3)).
These maximum random utility models are particularly interesting because

they can be rewritten in such a way as to also predict response time. The key
step is to convert the above maximum random utility model of best and/or
worst choice into an equivalent “horse race”minimum random utility of best
and/or worst choice and response time (Marley & Colonius, 1992). See Hawkins
et al. (2012) for such extension

Appendix B
General relations between the scale values in Case 2 and Case 3

The result in the text relating the Case 2 scale to the Case 3 scales was based
on the assumption that for each attribute i, the scale ui of Case 3 is, separately,
strictly monotonic increasing with respect to the scale u of Case 2. Although
this is an interesting, and possibly desirable result, the data may be otherwise.
A weaker relation is obtained with the following weaker assumption.
Assume that there is a function F that maps a typical vector of scale values

(u(r1), ..., u(rm)) of the attribute-level maxdiff model on single profiles to the
overall scale value u(m)(r1, ..., rm) of the maxdiffmodel on profiles (Def. 2), i.e.,

F (u(r1), ..., u(rm)) = u(m)(r1, ..., rm).

Similar to the previous case, we assume that u and u(m) are separate (different)
difference scales, and we also assume that the mapping F is invariant under ad-
missible transformations (here, changes of origin) in the following sense: There
is a function G on the non-negative real numbers such that for each α > 0,

F (u(r1) + α, ..., u(rm) + α) = F (u(r1), ..., u(rm)) +G(α),

The mathematical question then becomes: what are the possible solutions of
the above equation for F (and G)? Under quite weak regularity conditions9 ,
the general solution has the form (Aczél et al., 1986): for some i, i ∈ {1, ...,m},

9That certain functions are bounded on an arbitarily small open m-dimensional interval.
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and a constant ci,

F (u(r1), ..., u(rm))

=

 c1u(rm) + f (u(r1)− u(rm), ..., u(rm−1)− u(rm))
ciu(ri) + f (u(r1)− u(ri), ..., u(ri−1)− u(ri), u(ri+1)− u(ri), ..., u(rm−1)− u(rm))

cmu(rm) + f (u(r1)− u(rm), ..., u(rm−1)− u(rm))


if

 i = 1
1 < i < m,
i = m

.

where f is an arbitrary non-negative function with f = const if m = 1. It is
important to understand that a specific solution is one such function f , for a
particular i. Also, for the present application, we would expect F to be strictly
increasing in each variable; a suffi cient condition for this is that ci > 0 for each
i and f is strictly increasing in each variable.
Clearly, the above functional relation between the maxdiff scale u(m) and the

attribute-level scale u is quite general - for instance, the following is a possible
solution, where, for simplicity, we set m = 3 : there are constants A,B,C > 0
such that

u(m)(r1, ..., r3) = Cu(r1) +A(u(r2)− u(r1)) +B log (u(r3)− u(r1)) .

Thus, if the above assumptions hold (and the previous linear ones do not), then
it is a challenging empirical task to explore possible relations between the scale
u of Case 2 and the scales ui , i = 1, ...,m, of Case 3.
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Figure 1. A completed example BWS ‘object case’ question  

Most Issue Least 
 Pesticides used on crops  
 Hormones given to livestock  
 Irradiation of foods  
 Excess salt, fat cholesterol  

 Antibiotics given to livestock  

Please consider the food safety issues in the table above and tick which concerns you most and which 
concerns you least. 
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Figure 2. A completed example BWS ‘profile case’ question  

Most Appointment #1 Least 
 You will have to wait two months for your appointment  
 The specialist has been treating skin complaints part-time for 1-2 years  
 Getting to your appointment will be quick and easy  

 The consultation will be as thorough as you would like  

Please imagine being offered the appointment described above and tick which feature would be best 
and which would be worst. 
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Figure 3. A completed example BWS ‘profile case’ question based on EQ-5D instrument 

Best  Worst 
 Some problems walking about  
 No problems with self-care  
 Some problems with performing usual activities  
 Extreme pain or discomfort  
 Moderately anxious or depressed  

Imagine you were living in the health state described above. Tick which aspect of this would be best to 
live with and which would be worst to live with. 
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Figure 4. An example BWS ‘multi-profile case’ question  
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Table 1. Choice sets from a 2J expansion for four objects. A  means the object is in the choice set, a  
 means the object is not in the choice set.  

  Object W Object X Object Y Object Z 
Set 1     
Set 2     
Set 3     
Set 4     
Set 5     
Set 6     
Set 7     
Set 8     
Set 9     
Set 10     
Set 11     
Set 12     
Set 13     
Set 14     
Set 15     
Set 16     
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